PERFECT NuMBer
 Titepmernoserocezeal

C. F. Tang

Perfect Number | Sample Mock Examination
 Mathematics (Compulsory Part)

Paper 2

Time allowed: 1 hour 15 minutes
Full mark : 45
This question book consists of 13 printed pages.

Instructions to candidates:

1. This paper consists of 45 multiple-choice questions.

There are 30 questions in Section A and 15 questions in Section B. All questions carry equal marks.
2. Answer ALL questions.
3. Choose the best answer for each question.
4. When told to check the question paper, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
5. You should mark only ONE answer for each question. If you mark more than one answer, you will receive NO MARKS for that question.
6. No marks will be deducted for wrong answers.
7. The diagrams in this paper are not necessarily drawn to scale.
8. Calculator pad printed with the "HKEA Approved" / "HKEAA Approved" label is allowed.

There are 30 questions in Section A and 15 questions in Section B.

The diagrams in this paper are not necessarily drawn to scale.
Choose the best answer for each question.
Section A

1. $(-8)^{2 n-1} \cdot(-2)^{2 n+1}=$
A. $2^{-8 n+2}$
B. $4^{4 n-1}$
C. $-4^{4 n-1}$
D. $-4^{-4 n+1}$
2. for $x>1$, if $x+\frac{1}{x}=k$, then $x^{2}-\frac{1}{x^{2}}=$
A. $k \sqrt{k^{2}-4}$
B. $k \sqrt{k^{2}-2}$
C. $k^{2}-4$
D. $k^{2}-2$
3. If $2 x=3 y=4 z$, then $\frac{x+y}{z}=$
A. $\frac{3}{10}$
B. $\frac{4}{5}$
C. $\frac{5}{4}$
D. $\frac{10}{3}$
4. If $A(x+1)(x-2)+B(x+1)(x+3)+C(x-2)(x+3) \equiv 5 x^{2}+12 x-18$. Find the value of $2 A+$ $B+C$.
A. $-\frac{12}{5}$
B. $\frac{41}{10}$
C. 5
D. $\frac{31}{5}$
5. If α, β are roots of $2 x^{2}+3 x-7=0$, then $2 \alpha^{2}-3 \beta=$
A. 10
B. 11
C. $\frac{23}{2}$
D. $\frac{25}{2}$
6. Let $f(x+1)=2 x^{3}-5 x+8$, find the remainder when $f(x)$ is divided by $x+1$.
A. -2
B. 2
C. 5
D. 10
7. If $f(2 x+1)=\frac{3+2 x}{2-3 x}$, find $f(x)$.
A. $\frac{2+x}{3-4 x}$
B. $\frac{2 x}{x+1}$
C. $\frac{2+x}{3-2 x}$
D. $\frac{4+2 x}{7-3 x}$
8. The speed of a train is decreased by $r \%$. Find the percentage change in the time taken to travel the same distance.
A. $\frac{100 r}{1-r} \%$
B. $\frac{r}{r-100} \%$
C. $\frac{100 r}{100-r} \%$
D. $\frac{r}{1-100 r} \%$
9. The figure shows the graph of $y=a x^{2}+b x+c$. Which of the following is/are true?
I. $\quad a<0$
II. $\quad b>0$
III. $\frac{b}{c}<\frac{4 a}{b}$
A. I and II only
B. II and III only
C. I and II only

D. I and III only
10. The coordinates of point A are $(3,-4)$. If A is rotated anticlockwise about the origin through 270° and then reflected along the x-axis to point B, find the coordinates of point B.
A. $(-3,-4)$
B. $(-4,3)$
C. $(-4,-3)$
D. $(3,4)$
11. In the figure, $A B C D$ is a rectangle. M is the mid-point of $A B . D M$ and $D B$ intersects $A C$ at E and F respectively. Find the ratio of area of $\triangle D E F$ to $\triangle B C F$.
A. $1: 4$
B. $1: 3$
C. $2: 5$
D. $3: 7$

12. The equations of straight lines L_{1} and L_{2} are $y=2 x$ and $y=-x$ respectively. If P is a moving point such that P is equidistant from L_{1} and L_{2}, the locus of P is/are
A. a straight line which is parallel to L_{1} and L_{2}
B. a parabola
C. a circle with origin as centre
D. a pair of straight lines that pass through the origin
13. In the figure, $A B C D$ is a trapezium with $A D / / B C . A B=4, B C=8, A D=5, \angle B A D=115^{\circ}$. Find $C D$ correct to 1 decimal place.
A. 3.8
B. 3.9
C. 4.2
D. 4.3

14. When $x+2 x^{2}+3 x^{3}+4 x^{4}+\cdots+2 n x^{2 n}$, where n is a positive integer, is divided by $x+1$, the remainder is
A. $-n$
B. n
C. $-\frac{n}{2}$
D. $\frac{n}{2}$
15. In the figure, $A B C D E$ is a regular pentagon and $\triangle A B F$ is an equilateral triangle. If $A C$ meets $F B$ at G, then $\angle A G B=$
A. 82°
B. 84°
C. 92°
D. 96°

16. In the figure, $A D$ is a median of $\triangle A B C$ and E is a point lying on $A C$ such that $A E=3 E C$. $B E$ intersects $A D$ at F. The ratio of $B F: F E=$
A. $1: 1$
B. $3: 2$
C. 5: 4
D. $4: 3$

17. In the figure, $B D$ is the angle bisector of $\angle A B C$. Which of the following is correct?
A. $A B \times B C=C D \times A D$
B. $A B \times A D=B C \times C D$
C. $A B \times B D=B C \times A D$
D. $A B \times C D=B C \times A D$

18. $\frac{\sin ^{2}\left(180^{\circ}+\theta\right)+\cos ^{2} \theta}{\tan \left(90^{\circ}+\theta\right) \cos \left(180^{\circ}+\theta\right)}$
A. $\frac{\sin ^{2} \theta}{\cos \theta}$
B. $\frac{\sin \theta}{\cos ^{2} \theta}$
C. $\frac{\cos ^{2} \theta}{\sin \theta}$
D. $\frac{\cos \theta}{\sin ^{2} \theta}$
19. In the figure, $A B C D$ is a square, E is a point divided $A B$ into $1: 2, F$ is a point on $B C$ such that $E F$ produced meet $D C$ produced at G. If $D G=E G$, find $\angle D F E$ correct to nearest degree.
A. 55°
B. 58°
C. 60°
D. 63°

20. In the figure, $B M=4 \mathrm{~cm}, C M=6 \mathrm{~cm}, D M=5 \mathrm{~cm}, A M=$
A. $\frac{10}{3}$
B. $\frac{24}{5}$
C. $\frac{15}{2}$
D. Can't be determined

21. In the figure, O is the centre of the circle. a, b, c and d are angles at circumference. Which of the following is/are correct?
I. $\quad a=2 b$
II. $\quad c=2 d$
III. $2 a=c+2 b$
A. I and II only
B. I and III only

C. II and III only
D. I, II and III
22. $\frac{1+b i^{3}}{i}=$
A. $b+i$
B. $b-i$
C. $-b+i$
D. $-b-i$
23. Which of the following regions may represent the solution of $\left\{\begin{array}{c}2 x+y-5 \geq 0 \\ x-y-3 \geq 0\end{array}\right.$
A.

B.

C.

D.

24. Peter purchase a box of N oranges with $\$ x$, afterward he found that 10 of them are rotten, then he sold the rest at a price which $\$ 3$ more than the cost price of each orange, at a result he earned $\$ 100$. Which of the following relation between N and x is correct?
A. $(N-10)(x+3)=100$
B. $(N-10)\left(\frac{x}{N}+3\right)=100$
C. $(N-10)(x+3)=x+100$
D. $(N-10)\left(\frac{x}{N}+3\right)=x+100$
25. Suppose that a teacher has had 4 of his students, A, B, C, and D, take a test and wants to let them grade each other's. How many ways could the teacher hand the tests back to the students for grading, such that no student received his or her own test back?
A. 3
B. 6
C. 9
D. 23
26. There are six cards numbered $0,1,2,2,3,4$. Two cards are chosen at random, find the probability that the product of two numbers is an even number.
A. $\frac{1}{15}$
B. $\frac{2}{5}$
C. $\frac{8}{15}$
D. $\frac{14}{15}$
27. In the figure, the circle $x^{2}+y^{2}-4 x+6 y=0$ cut x-axis and y-axis at A and B respectively, find the value of $\tan \theta$.
A. $\frac{1}{3}$
B. $\frac{1}{2}$
C. $\frac{2}{3}$
D. $\frac{3}{4}$

28. The following table shows the number of books rented from a bookstore by 80 customers.

Number of books rented	0	1	2	3	4
Frequency	24	19	17	11	9

Find the inter-quartile range of the books rented.
A. 2
B. 2.5
C. 3
D. 4
29. The box-and-whisker diagram below shows the distribution of the score of two tests from same group of students. Which of the following must be false?

A. mean score of test $1<$ mean score of test 2
B. median score of test $1=$ median score of test 2
C. the distribution of test 2 is less dispersed than test 1
D. the number of students in test 2 who score less than 9 is more than that in test 1
30. What is the domain of the function $y=\frac{2}{\sqrt{x-1}}+\sqrt{3-x}$
A. $1<x \leq 3$
B. $1 \leq x \leq 3$
C. $x \leq 3$
D. $x>1$

Section B

31. If a straight line $k x+y=1$ cuts the curve $y=x^{2}$ at A and B, find in term of k, the coordinates of midpoint of A and B.
A. $\left(-\frac{k}{2}, \frac{2+k^{2}}{2}\right)$
B. $\left(-\frac{k}{2}, \frac{k^{2}}{4}\right)$
C. $(0,1)$
D. $\left(-\frac{k}{2}, 1\right)$
32. The graph in the figure shows the linear relation between $\log _{2} x$ and $\log _{2} y$. Which of the following must be true?
A. $x y^{2}=4$
B. $x^{2} y=4$
C. $y=x^{-\frac{1}{2}}+2$
D. $y=x^{-2}+2$

33. $29 \times 16^{8}+4 \times 16^{3}+12 \times 16^{2}=$
A. $1 D 00004 C 00_{16}$
B. $1 D 00004 C 0_{16}$
C. $1 D 0004 C 00_{16}$
D. $1 D 0004 C 0_{16}$
34. If α, β are roots of $a x^{2}+b x+c=0$, then $\alpha^{4}+\beta^{4}=$
A. $\frac{b^{4}-4 a b^{2} c+2 a^{2} c^{2}}{a^{4}}$
B. $\frac{b^{4}-4 a b^{2} c+4 a^{2} c^{2}}{a^{4}}$
C. $\frac{b^{4}+4 a b^{2} c+2 a^{2} c^{2}}{a^{4}}$
D. $\frac{b^{4}+4 a b^{2} c+4 a^{2} c^{2}}{a^{4}}$
35. The figure shows the graph of
A. $y=3+\sin 2 x$
B. $y=3+2 \sin \frac{x}{2}$
C. $y=3-\sin 2 x$
D. $y=3-2 \sin \frac{x}{2}$

36. If $\log _{2}(x+1)-\log _{2}(2 x+1)<0$, then
A. $x>0$
B. $x<-\frac{1}{2}$ or $x>0$
C. $x<-1$ or $x>-\frac{1}{2}$
D. $x<-1$
37. In the figure, A and D are points on the circle, $V A$ and $V D$ cut the circle at B and C respectively. If $A B=B V=12, V C=16$, find $C D$.
A. 2
B. 8
C. 12
D. 16

38. The figure shows the graphs of $y=f(x)$ and $y=g(x) . f(x)$ is a quadratic function having vertex at the origin. The graph of $y=g(x)$ can be obtained by transformation of the graph of $y=f(x)$. If $a>0$, which of the following may be the relation between $f(x)$ and $g(x)$?
I. $g(x)=-f(2 x-a)$
II. $\quad g(x)=-a f(x-a)$
III. $g(x)=-2 f(2 x-a)$
A. I only
B. II only
C. I and III only
D. I, II and III

39. A, B are the point on x-axis and y-axis respectively. P is the mid-point of $A B$ such that $A B=10$, what is the equation of locus of P ?
A. $y=x$
B. $x^{2}+y^{2}=25$
C. $x^{2}+y^{2}=100$
D. $x^{2}+y^{2}-20 x-20 y+100=0$

40. The figure shows a regular tetrahedron with $\triangle \mathrm{ABC}$ as its base, if the area of $\triangle \mathrm{ABC}$ is $\sqrt{3} \mathrm{~cm}^{2}$, what is the volume of the solid?
A. $\frac{\sqrt{3}}{6} \mathrm{~cm}^{3}$
B. $\frac{\sqrt{3}}{3} \mathrm{~cm}^{3}$
C. $\frac{\sqrt{6}}{6} \mathrm{~cm}^{3}$
D. $\frac{2 \sqrt{2}}{3} \mathrm{~cm}^{3}$

41. In the figure, $A D, G D$ and $C E$ are tangents to the circle at B, F and H respectively. Which of the following must be correct?
I. $C H+C D=D F$
II. $\angle D C E=\angle D E C$
III. $\angle C B F=\angle C E D$
A. I only
B. I and II only
C. I and III only
D. II and III only

42. In the figure, the coordinates of A, B and C are $(0,3),(0,-3)$ and $(4,0)$ respectively, find the coordinates of the circumcentre of $\triangle \mathrm{ABC}$.
A. $\left(\frac{4}{9}, 0\right)$
B. $\left(\frac{7}{8}, 0\right)$
C. $\left(\frac{4}{3}, 0\right)$
D. $\left(\frac{8}{3}, 0\right)$

43. In the figure, two circle C_{1} and C_{2} touch externally at B such that $O B$ is their common tangent, $O A$ and $O C$ are two other tangents to C_{1} and C_{2} respectively. D is a point on C_{2} such that $\angle A O B: \angle B O C$: $\angle B D C=1: 2: 3$, find $\angle A C B$.
A. 7.5°
B. 10.25°
C. 11.25°
D. 12.5°

44. If a, b, c is a geometric sequence, which of the following must be true?
I. $\log \sqrt{a}, \log \sqrt{b}, \log \sqrt{c}$ is an arithmetic sequence.
II. $\quad 2^{\log a^{2}}, 2^{\log b^{2}}, 2^{\log c^{2}}$ is a geometric sequence.
III. $a x^{2}+2 b x+c=0$ has double roots.
A. I and II only
B. II and III only
C. I and III only
D. I, II and III
45. There are two group of students with mean and variance of their height as follow,

Group	Number of students	Mean (cm)	Variance $\left(\mathrm{cm}^{2}\right)$
A	8	168	36
B	6	168	48

What is the variance of the height of these 14 students? Correct your answer to 1 decimal place.
A. $\quad 27.4 \mathrm{~cm}^{2}$
B. $\quad 41.1 \mathrm{~cm}^{2}$
C. $41.8 \mathrm{~cm}^{2}$
D. $42.0 \mathrm{~cm}^{2}$

1.	B	11.	B	21.	C	31.	A	41.	A
2.	A	12.	D	22.	D	32.	A	42.	B
3.	D	13.	B	23.	B	33.	A	43.	C
4.	B	14.	B	24.	D	34.	A	44.	B
5.	C	15.	B	25.	C	35.	B	B	
6.	B	16.	D	26.	D	36.	A		
7.	D	17.	D	27.	C	37.	A		
8.	C	18.	B	28.	B	38.	C		
9.	D	19.	D	29.	D	39.	B		
10.	B	20.	A	30.	A	40.	D		

1. $(-8)^{2 n-1} \cdot(-2)^{2 n+1}$
$=(-2)^{3(2 n-1)} \cdot(-2)^{2 n+1}$
$=(-2)^{6 n-3+2 n+1}$
$=(-2)^{8 n-2}$
$=(2)^{2(4 n-1)}$
$=4^{4 n-1}$
2. $x+\frac{1}{x}=k$
$\left(x+\frac{1}{x}\right)^{2}=k^{2}$
$x^{2}+2+\frac{1}{x^{2}}=k^{2}$
$x^{2}-2+\frac{1}{x^{2}}=k^{2}-4$
$\left(x-\frac{1}{x}\right)^{2}=k^{2}-4$
$x-\frac{1}{x}=\sqrt{k^{2}-4}$
$\Rightarrow x^{2}-\left(\frac{1}{x}\right)^{2}=\left(x+\frac{1}{x}\right)\left(x-\frac{1}{x}\right)$
$=k \sqrt{k^{2}-4}$
3. $2 x=3 y=4 z$
$\Rightarrow x: y: z=\frac{1}{2}: \frac{1}{3}: \frac{1}{4}$
$x: y: z=6: 4: 3$
$\therefore \frac{x+y}{z}=\frac{10}{3}$
4. $\quad A(x+1)(x-2)+B(x+1)(x+3)+$
$C(x-2)(x+3) \equiv 5 x^{2}+12 x-18$
sub $x=-3$
$10 A=-9$
$A=-\frac{9}{10}$
by considering the coefficient of x^{2},
$A+B+C=5$
$\therefore 2 A+B+C=-\frac{9}{10}+5$
$=\frac{41}{10}$
5. $2 x^{2}+3 x-7=0$
$2 \alpha^{2}+3 \alpha-7=0$
$2 \alpha^{2}=7-3 \alpha$
$\therefore 2 \alpha^{2}-3 \beta$
$=7-3(\alpha+\beta)$
$=7-3\left(-\frac{3}{2}\right)=\frac{23}{2}$
6. remainder $=f(-1)$
$=f(-2+1)$
$=2(-2)^{3}-5(-2)+8$
$=2$
7. $f(x)=f\left(2\left(\frac{x-1}{2}\right)+1\right)$
$=\frac{3+2\left(\frac{x-1}{2}\right)}{2-3\left(\frac{x-1}{2}\right)}$
$=\frac{4+2 x}{7-3 x}$
8. Let s be speed, d be distance and t be time
$t=\frac{d}{s}$
$t_{n e w}=\frac{d}{(1-r \%) s}$
$\%$ change of speed $=\frac{\frac{d}{(1-r \%) s}-\frac{d}{s}}{\frac{d}{s}} \times 100 \%$

$$
\begin{aligned}
& =\left[\frac{1}{(1-r \%)}-1\right] \times 100 \% \\
& =\left[\frac{r \%}{(1-r \%)}\right] \times 100 \% \\
& =\frac{100 r}{100-r} \%
\end{aligned}
$$

9. concave downward, $a<0$
\because axis of asymptotes <0
$\therefore-\frac{b}{2 a}<0$

$$
b<0
$$

there are two x-intercepts
$b^{2}-4 a c>0$
$b^{2}>4 a c$
$\frac{b}{c}<\frac{4 a}{b} \quad(\because b<0$ and $c>0)$
10. $(3,-4) \Rightarrow(-4,-3) \Rightarrow(-4,3)$
11.

$A E: E C=A M: F C=1: 2$
let $A E=1, E F=2$ and $E F=x$
$\because A F=F C$
$\therefore 1+x=2-x$
$x=0.5$
$\triangle D E F: \triangle A E D=0.5: 1=1: 2$
$\triangle A D F=\triangle B F C$
$\therefore \triangle D E F: \triangle B C F=1: 1+2=1: 3$
12. The locus of P are the angle bisectors of L_{1} and L_{2}

13. let M be a point on $B C$ such that $D M / / A B$

$C M=8-5=3$
$D M=A B=4$
$\angle D M C=\angle A B C=180^{\circ}-115^{\circ}=65^{\circ}$
$C D^{2}=4^{2}+3^{2}-2(4)(3) \cos 65^{\circ}$
$C D=3.854$
14. Let $f(x)=x+2 x^{2}+3 x^{3}+\cdots+2 n x^{2 n}$

Remainder $=f(-1)$
$=-1+2-3+4-5+\cdots+2 n$
$2 n$ terms
$=1+1+1+\cdots+1$
n terms
$=n$
15. $\angle A B C=108^{\circ}$
$\angle A C B=\angle C A B=36^{\circ}$
$\angle A G B=180^{\circ}-36^{\circ}-60^{\circ}$
$\angle A G B=84^{\circ}$
16. Let G be a point on $B C$ such that $E G / / A D$

$\because C E: E A=1: 3$
$\therefore C G: G D=1: 3$
as AD is median,
$\therefore C D=D B$
$\Rightarrow C G: G D: D B=1: 3: 4$
$\Rightarrow B F: F E=4: 3$
17. in $\triangle A B D$,
$\frac{A D}{\sin \angle A B D}=\frac{A B}{\sin \angle A D B}$
$\frac{\sin \angle A B D}{\sin \angle A D B}=\frac{A D}{A B}$
in $\triangle B C D$,
$\frac{D C}{\sin \angle C B D}=\frac{B C}{\sin \angle B D C}$
$\frac{\sin \angle C B D}{\sin \angle B D C}=\frac{C D}{B C}$
$\because \angle A B D=\angle C B D$
and $\sin \angle B D C=\sin \left(180^{\circ}-\angle A D B\right)$
$=\sin \angle A D B$
$\therefore \frac{A D}{A B}=\frac{C D}{B C}$
$A B \times C D=B C \times A D$
18. $\frac{\sin ^{2}\left(180^{\circ}+\theta\right)+\cos ^{2} \theta}{\tan \left(90^{\circ}+\theta\right) \cos \left(180^{\circ}+\theta\right)}$
$=\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\frac{-1}{\tan \theta}(-\cos \theta)}$
$=\frac{\tan \theta}{\cos \theta}$
$=\frac{\sin \theta}{\cos ^{2} \theta}$
19. let $A E=1, E B=2$ and $A D=3$
$\tan \angle A D E=\frac{1}{3} \Rightarrow \angle A D E=18.43^{\circ}$
$\angle E D G=90^{\circ}-18.43^{\circ}=71.57^{\circ}$
$\angle E G D=180^{\circ}-2 \times 71.57^{\circ}=36.87^{\circ}$
$E D=\sqrt{3^{2}+1^{2}}=\sqrt{10}$
$E D^{2}=D G^{2}+E G^{2}-2(D G)(E G) \cos \angle E G D$
$10=2 D G^{2}-2 D G^{2} \cos 36.87^{\circ}$
$D G=5$
$\therefore C G=2=E B$
$\Rightarrow \triangle B E F \cong \triangle C G F$
$\Rightarrow B F=C F=1.5$
$\tan \angle B F E=\frac{2}{1.5} \Rightarrow \angle B F E=53.13^{\circ}$
$\tan \angle C F D=\frac{3}{1.5} \Rightarrow \angle C F D=63.43^{\circ}$
$\angle D F E=180^{\circ}-53.13^{\circ}-63.43^{\circ}=63.44^{\circ}$
20. $\triangle M B C \sim \triangle M A D$
$\frac{A M}{B M}=\frac{D M}{C M}$
$\frac{A M}{4}=\frac{5}{6}$
$A M=\frac{10}{3}$
21. I and II are obvious
by consider exterior angle,
$a+d=b+c$
$a+\frac{c}{2}=b+c$
$2 a=c+2 b \quad \Rightarrow$ III is correct
22. $\frac{1+b i^{3}}{i}$
$=\frac{1+b i^{3}}{i} \cdot \frac{i}{i}$
$=\frac{i+b i^{4}}{-1}$
$=-(i+b)$
$=-b-i$
23. for $2 x+y-5=0$
x-intercept: $\frac{5}{2}$
y-intercept: 5
for $x-y-3=0$
x-intercept: 3
y-intercept: -3
By choosing right hand side region for both equation, B is the answer
24. \quad cost for each orange $=\frac{x}{N}$
selling price of each orange $=\frac{x}{N}+3$
number of oranges sold $=N-10$
$\therefore(N-10)\left(\frac{x}{N}+3\right)=x+100$
25. \square suppose A take first, he has 3 choice
$3(1+2 \times 1)=9$
if the second choice is other than A, there are 2 choice, but 1 choice left for the last student
Lif the second student choose A's test paper, only 1 arrangement left for the rest
26. P (prouct is even)
$=1-P($ both odd $)$
$=1-\frac{2}{6} \times \frac{1}{5}$
$=\frac{14}{15}$
27. Join A and B, then $\angle A B O=\theta$
$\therefore \tan \theta=\frac{O A}{O B}=\frac{4}{6}=\frac{2}{3}$
28. lower quartile lie between $20^{\text {th }}$ and $21^{\text {st }}$ data upper quartile lie between $60^{\text {th }}$ and $61^{\text {st }}$ data $\mathrm{IQR}=2.5-0=2.5$
29. number of data cannot be observed from box-and-whisker diagram
30. for $y=\frac{2}{\sqrt{x-1}}+\sqrt{3-x}$ is define
$x-1>0$ and $3-x \geq 0$
$x>1$ and $x \leq 3$
$1<x \leq 3$
31. $\left\{\begin{array}{l}k x+y=1 \\ y=x^{2}\end{array}\right.$
$\Rightarrow k x+x^{2}=1$
$x^{2}+k x-1=0$
$\because x$-coordinates of A and B are the
roots of the above equation
$\therefore x$-coordinates of the mid-pint of
A and B are $-\frac{k}{2}$
sub into $k x+y=1$
$y=1-k\left(-\frac{k}{2}\right)$
$y=\frac{2+k^{2}}{2}$
32. slope of line $=-\frac{1}{2}, y$-intercept $=1$
$\log _{2} y=-\frac{1}{2} \log _{2} x+1$
$\log _{2} y=\log _{2} 2 x^{-\frac{1}{2}}$
$y=2 x^{-\frac{1}{2}}$
$y^{2}=4 x^{-1}$
$x y^{2}=4$
33. $29 \times 16^{8}+4 \times 16^{3}+12 \times 16^{2}$
$=(16+13) \times 16^{8}+4 \times 16^{3}+12 \times 16^{2}$
$=16^{9}+13 \times 16^{8}+4 \times 16^{3}+12 \times 16^{2}$
$=1 D 00004 C 00_{16}$
34. $\alpha^{4}+\beta^{4}$
$=\alpha^{4}+\beta^{4}+2 \alpha^{2} \beta^{2}-2 \alpha^{2} \beta^{2}$
$=\left(\alpha^{2}+\beta^{2}\right)^{2}-2 \alpha^{2} \beta^{2}$
$=\left[(\alpha+\beta)^{2}-2 \alpha \beta\right]^{2}-2(\alpha \beta)^{2}$
$=\left[\left(-\frac{b}{a}\right)^{2}-2 \frac{c}{a}\right]^{2}-2\left(\frac{c}{a}\right)^{2}$
$=\left(\frac{b^{2}-2 a c}{a^{2}}\right)^{2}-\frac{2 c^{2}}{a^{2}}$
$=\frac{b^{4}-4 a b^{2} c+4 a^{2} c^{2}}{a^{4}}-\frac{2 c^{2}}{a^{2}}$
$=\frac{b^{4}-4 a b^{2} c+2 a^{2} c^{2}}{a^{4}}$
35. half period $=360^{\circ} \Rightarrow$ enlarged along y-axis
by 2 times $\Rightarrow y=\sin \frac{x}{2}$
difference between midline and upper limit is
$2 \Rightarrow$ enlarged along y-axis by 2 times $\Rightarrow y=$ $2 \sin \frac{x}{2}$
y-intercept $=3 \Longrightarrow$ translated upward by 3
units $\Rightarrow y=3+2 \sin \frac{x}{2}$
36. $\log _{2}(x+1)-\log _{2}(2 x+1)<0$
$\log _{2}\left(\frac{x+1}{2 x+1}\right)<0$
$0<\frac{x+1}{2 x+1}<1$
for $0<\frac{x+1}{2 x+1}$
$x<-1$ (rej) or $x>-\frac{1}{2}$
for $\frac{x+1}{2 x+1}<1$
$(x+1)(2 x+1)<(2 x+1)^{2}$
$0<x(2 x+1)$
$x<-\frac{1}{2}(\mathrm{rej})$ or $x>0$
$\therefore x>-\frac{1}{2}$ and $x>0$
$\Rightarrow X>0$
37. join $B C$ and $A D$
$\because \triangle V B C \sim \triangle V D A$
$\therefore \frac{V B}{V D}=\frac{V C}{V A}$
$\frac{12}{16+C D}=\frac{16}{24}$
$C D=2$
38. I and III are obvious
for II, if $0<a<1, g(x)$ will be reduced
along y-axis from $f(x)$
\Rightarrow II is incorrect
39. let $P(x, y)$ be the locus
$\because P$ is the mid-point of $A B$
$\therefore A=(2 x, 0)$ and $A=(0,2 y)$
as $A B=10$
$\therefore(2 x)^{2}+(2 y)^{2}=10^{2}$
$x^{2}+y^{2}=25$
40. area of $\triangle A B C=\sqrt{3}$
$\frac{1}{2} A B^{2} \sin 60^{\circ}=\sqrt{3}$
$A B=2$
height of a regular tetrahedron
$=\sqrt{\frac{2}{3}} \times$ length of side
\therefore height $=2 \times \sqrt{\frac{2}{3}}=\frac{2 \sqrt{6}}{3}$
\Rightarrow Volume $=\frac{1}{3} \times \sqrt{3} \times \frac{2 \sqrt{6}}{3}$
$=\frac{2 \sqrt{2}}{3}$
41. $\quad C B=C H$
$\therefore \mathrm{I}$ is correct

II and III are obvious incorrect
42. let $M(h, 0)$ be the required coordinates
$M A=M C$
$\sqrt{h^{2}+3^{2}}=4-h$
$h=\frac{7}{8}$
43. let $\angle A O B=x, \angle B O C=2 x, \angle B D C=3 x$
$\because O C$ and $O B$ are tangent,
$\therefore \angle B C O=\angle C B O=\angle B D C=3 x$
$\Rightarrow 2 x+3 x+3 x=180^{\circ}$
$x=22.5^{\circ}$
$\because O C=O B$ and $O B=O A$
$\therefore O C=O A$
$\Rightarrow \angle O C A=56.25^{\circ}$
$\angle A C B=\angle O C B-\angle O C A$
$=67.5^{\circ}-56.25^{\circ}$
$=11.25^{\circ}$
44. II is obvious
a, b or c can be negative, II is incorrect
for $a x^{2}+2 b x+c=0$ has double roots
$(2 b)^{2}-4 a c=0$
$b^{2}=a c$
$\frac{b}{a}=\frac{c}{b} \quad \Rightarrow$ III is correct
45. $\quad \sigma_{A}{ }^{2}=\frac{\sum\left(x_{A}-\bar{x}\right)^{2}}{n}$
$\Rightarrow 36 \times 8=\sum\left(x_{A}-\bar{x}\right)^{2}$
$\sum\left(x_{A}-168\right)^{2}=288$
similarly,
$\sigma_{B}{ }^{2}=\frac{\sum\left(x_{B}-\bar{x}\right)^{2}}{n}$
$\sum\left(x_{B}-168\right)^{2}=48 \times 6$
$=288$
$\sigma_{A+B}{ }^{2}=\frac{\sum\left(x_{A}-168\right)^{2}+\sum\left(x_{B}-168\right)^{2}}{14}$
$\sigma_{A+B}^{2}=\frac{288+288}{14}$
$\sigma_{A+B}{ }^{2}=41.1$

